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We use a singular perturbation method to study the interface dynamics of a nonconserved order
parameter (NCOP) system, of the reaction-diffusion type, for the case where an external bias field or
convection is present. We find that this method, developed by Kawasaki, Yalabik, and Gunton [Phys.
Rev. A 17, 455 (1978)] for the time-dependant Ginzburg-Landau equation and used successfully on
other NCOP systems, breaks down for our system when the strength of convective nonlinearity gets

large enough.
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I. INTRODUCTION

The study of nonequilibrium systems where interfaces
are present is a challenging problem. The challenge of-
ten arises due to the interfaces being diffuse on a molec-
ular scale, yet appearing as discontinuities on the meso-
scopic length scale of growing domains, thereby generat-
ing a mesoscopic description with two disparate length
scales. To approximately solve the nonlinear Langevin-
type partial differential equation (PDE) used to model
one such system—the time-dependent Ginzburg-Landau
(TDGL) equation—an analytic method was developed by
Kawasaki, Yalabik, and Gunton (KYG) [1]. This singular
perturbation method (SPM) was subsequently applied to
many other systems where the order parameter is non-
conserved [1-3] conserved [4], coupled with long range
repulsive interactions [5], etc., all exhibiting strong non-
linear behavior at late times. However, the KYG method
has not yet been applied, to our knowledge, to a sys-
tem with a nonlinear convective derivative of the form
(v - V)9™, where 7 is the relevant order parameter field
in the system. This nonlinearity occurs in hydrodynam-
ics or when an external bias field E is present [6]. In this
case E plays the role of v. Hence it is of some interest to
examine the predictions of singular perturbation theory
in this context.

We will consider in particular a system where mechani-
cal transport competes with diffusive transport and dissi-
pation. A mean-field model of such a system is the Fisher
equation to which a convective nonlinearity, describing
mechanical transport, is added and whose strength can
be tuned with a parameter u. We call this new equa-
tion FEC [for Fisher equation with convective nonlinear-
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ity; cf. Eq. (1)]. The Fisher equation has been exten-
sively studied in literature [7-9], originally in the context
of population dynamics, and its treatment by the KYG
analysis yielded good results [7]. For FEC with p < 1,
the KYG SPM gives results very similar to those found
for the Fisher equation. But when p ~ O(1) or greater,
the result breaks down at early times, due to mechanical
transport dominating over diffusive processes, imposing
a serious limitation to singular perturbation results for
the type of system considered here.

Before we proceed to describe our results, some gen-
eral remarks about the validity and utility of the KYG
technique are in order. This technique is not meant to be
a means of obtaining a solution to the initial-value prob-
lem for a reaction-diffusion equation. Rather, it should
be interpreted as a way of obtaining an analytic form,
which may replicate the important features of the true
solution, thereby enabling one to obtain statistically im-
portant quantities.

For the TDGL equation with a scalar order parameter,
the analytic solution obtained by KYG is in disagreement
on one important point with the real (obtained numeri-
cally) solution [7], in that it has infinitesimally thin walls
at late times, whereas the real solution always has walls
of nonzero thickness. However, the analytic solution does
reasonably reproduce the defect (interface) distribution
of the real solution, starting from random initial condi-
tions. Also the time-dependent structure factor calcu-
lated from the analytic solution of KYG [1] is identical
to the better-known result of Ohta et al. [10], which is
derived using interface dynamics. The next application
of the SPM was to the d-dimensional Fisher equation
[7,11]. As in the TDGL case, the interfacial profile of the
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KYG analytic solution (which is a traveling wave front)
is artificially sharp compared to that for the real solution.
However, the (traveling wave) analytic solution has the
correct asymptotic velocity, even though the approach to
this asymptotic velocity is incorrect in one dimension,
where the exact result is known [9]. In the case where
long-range interactions are also present, these statistics
and defect dynamics are actually incorrectly given by the
KYG method [12]. We find similar limitation for our non-
conserved order-parameter system described by the FEC
equation, in contrast to other nonconserved systems.

In Sec. II, we extend our earlier applications of the
KYG method to the FEC, and follow the formalism de-
scribed in detail by Puri [7]. Because the KYG analysis
can be applied to FEC with only small differences as
compared to that done for the Fisher equation, only an
outline of the method is given here, emphasizing these
differences, and the reader is referred to [7] and [1] for
further details. In Sec. III, we compare the analytical
solution with numerical results and summarize.

II. MODEL: KYG METHOD ON FEC

The FEC in one space dimension is

du Ou 8%u 2 1
5t—+uu£—‘—9?+u-—u, ()

where the order parameter field u, the position z, and the
time ¢ have been rescaled to dimensionless units. The di-
mensionless quantity u is the ratio of convective to diffu-
sive strengths in the equation of motion for u and cannot
be scaled out. This equation is equivalent to Burgers’s
equation [13] in which one would add a linear source term
u (providing the instability) and a quadratic sink term
u? (providing the damping). Burgers’s equation is itself
analytically solvable. It often appears as a limiting case
in more complicated problems in hydrodynamics, usually
in the context of turbulence. Its main feature, due to the
convective term, is that it yields shocks, also observed in
the FEC. Note that p = 0 is the Fisher equation itself.

The solution, in Fourier space, of the linearized equa-
tion (1) is @Q(t) = e"*tu(0) with v, = 1 — k%. Thus for
k < 1, a)(t) grows exponentially in time with rate vy, a
signature of linear instability. In what follows, the tilde
denotes Fourier space and the superscript zero denotes
the solution to the linearized PDE.

The nonlinear equation (1) can be rewritten in an in-
tegral form in terms of the linear solution as

t
() = aQ(t) — #[) A ke‘yk(t—t 5(k — k1 — ka)
x g(ky)ix, (t')ix, (t')dk dkodt’, (2)

where g(k) = 1 — ipk and J represents a Dirac é func-
tion. The effect of convection is totally included in g(k),
which would be identically 1 for the Fisher equation. In
applying the KYG technique, this modification creates
no major difficulty. Note, however, that if the nonlinear
damping term had been a 3 instead of a u2, g(k) would
actually be a functional of u, so that the KYG analysis

would be impossible to carry out.

The essential idea of the KYG method is to generate
an infinite order perturbative expansion around a}(t),
approximate the nth order term in a suitable manner and
resum the resulting infinite series to get an approximate,
yet analytic, closed form result [14]. The only difference
between the Fisher equation (FE) and the FEC is that
g(k) is not identically 1. In spite of this difference, the
early part of the KYG analysis can be carried out for (2),
yielding for the nth-order term

oA e

where the superscripts FEC and FE refer to the respec-
tive equations, and

CFE ~ (_l)n
T, (1+ cek?)

" I:11 [/1; i, (t)] Ty, () (4)

with @k (t) = Yoo, n!CEEC(k,t). Even with this much
simpler form, the power series for (t) is still not
summable analytically. To do this and also be able to
Fourier transform back to real space, one approximates
the coefficient of the multiple integrals in (4) to first order
in k, since the major contribution to the Fourier trans-
form comes from k near 0. For pu = 0 this is a very
good approximation. But for u # 0, g(k) is complex, so
that a phase error is also introduced. Because the singu-
lar perturbation expansion contains an infinite number
of terms which must partly cancel each other to give a
convergent sum, this phase error, although small, could
introduce cancellation effects whose consequences can be
judged only a posteriori.

With this further approximation, one can analytically
resum the power series for 4x(t) and invert the Fourier
transform to get [15]

u(z,t) ) ‘ 5)

u(z,t) ~ (1 +”8%) (m

Note that we recover the KYG solution to the Fisher
equation when g = 0. The ,u% term induces the same
type of asymmetry in (5) as that given to the PDE (1)
by the convective term. However, one of the conse-
quences of /".9% is the development, at large times, of
strong peaks in u(z,t) at the interfaces, indicating a
breakdown of the singular perturbation result. Further-
more, one can see that this occurs for any finite order

expansion of [g(n—il)] in k. Given that higher order

CFE (n — 0o0) will dominate the power series for ii(t) at
large times, and that the k values dominating the dynam-

ics are near zero, a remedy is to approximate g(nLH)

with a simpler nonpolynomial function in k, close to it
for kK & 0 and n — oo. One possibility which will give
tractable summation and a Fourier-transformable dia-
gram is exp(—ipk). This approximation, which is very
good for p <« 1 (cf. Sec. III) exhibits no peaks at the
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interfaces even as t — co. Then from (3) one now gets,
instead of (5),

Although the exp(pg%) operator does not create ar-
tificial peaks at the interfaces for any p and t, it is in
effect a translation operator. Hence if the KYG solution
to the Fisher equation (1 = 0) is denoted by uFE(z,t) =
u®(z,t)/[1 +u°(z,t)], we have uFEC(z,t) = uFE(z — p, 1),
i.e., the solution to the FEC from this singular pertur-
bation expansion is in fact a translated solution to the
Fisher equation. Since the true effect of the convective
term cannot be equated to a translation, it is immedi-
ately apparent that important characteristics of convec-
tion have been lost in this singular perturbation analysis.
This will be crucial when y is sufficiently large. We now
briefly discuss and compare these analytic results with
those of numerical integrations.

III. DISCUSSION

In Fig. 1 we show the exact numerical integration of
the FEC equation, at relatively small values of p and
intermediate times (¢ = 20), for a seed initial condition
centered at z = 0 [i.e., u(z,0) = §(z)]. The p = 0 curve
is a numerical solution to the Fisher equation. The stan-
dard Euler integration method was used for all numerical
integrations, with time and space meshes suitably chosen
to insure stability and precision. After a transient time
approximately equal to 10, the interface profiles change
little and the interface velocity reaches a value within
10% of its asymptotic value. Hence the curves for ¢t > 20
are almost identical to those of Fig. 1 but with larger
bulk region (where u = 1). As for the shock waves found
in the solution of the Burgers equation, the effect of the
convective term on the spatially symmetric solution of
the Fisher equation is to steepen the right interface and
broaden the left one, as p increases. One way of seeing
analytically how the convective nonlinearity operates is
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FIG. 1. Numerical solution of FEC at t = 20 and several
values of p (cf. figure legend), from a localized initial condi-
tion in £ = 0. The g = 0 curve is symmetric with respect
to the origin. Others get distorted by the convection term
(v #0).
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to look at the PDE %u = u%u which has, in implicit
form, u(z,t) = f[z — u(z,t)t] as a solution. This is a
“wave” with points at height u traveling at speed u, so
that higher points travel faster than lower ones.

In Fig. 2 we compare the results of a numerical inte-
gration for FEC with the analytical results of Eqgs. (5)
and (6), for p = 0.1 and t = 20. The offset between
the interface of either of the approximate solutions and
that of the exact numerical one occurs because at early
times the front velocity in the exact numerical solution
is significantly smaller than in the approximate solutions
(always 2). The asymptotic velocity of the exact solu-
tion, namely 2 (independent of y for small p) is correctly
given by (5) and (6). Hence, although the profiles of the
approximate solutions are too steep, the dynamics of the
walls are correctly given.

The interfaces given by our approximate solu-
tions can be softened further by approximating
e, (1 + (ﬁ#kz) in (4) by exp(—k?/2) instead of 1,
which is an extremely good approximation (less than 1%
error) for all k < 1 and n 2 4 (this softening is analo-
gous to one done by Oono and Puri [16] and Puri [7]).
However, one finds that the change induced is very slight,
indicating that the hardness of the interfaces of the ap-
proximate solutions is deeply buried in the earlier ap-
proximations.

For large p (starting at about 5), both approximate so-
lutions break down, although for different reasons. Equa-
tion (5) has peaks appearing at the interfaces, while the
asymmetry of the analytical solution Eq. (6) matches in
no way that of the real numerical solution. The veloc-
ity of the right interface is wrongly given by both ana-
lytic solutions, as the real velocity is much greater than
2 (cf. Fig. 3) at all times. Finally, the left interface of
the exact numerical result is extremely broad for large
, something that the SPM seems incapable of describ-
ing. Because the breakdown occurs not only in terms of
order-parameter profile but of defect dynamics as well,
statistical properties (due to random initial conditions,
for example) will also be incorrectly given by the SPM.

We can therefore say that KYG SPM gives results very
close to the real solution in terms of profile and velocity
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FIG. 2. Order parameter profile for the numerical solu-
tion (solid curve), for Eq. (5) (dotted curve), and for Eq. (6)
(dashed curve), at ¢t = 20 and g = 0.1.
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FIG. 3. Numerical solution (solid curve) and Eq. (6)
(dashed curve) at t = 20 and u = 20. Again, from initial
condition in z = 0.
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up to p ~ O(1). But as the shock wave nature of the
convective nonlinearity manifests itself more and more
strongly (as p increases), the KYG SPM does not man-
age to capture the essential features of convection, both
in profiles and defect dynamics. Several analytical ap-
proaches are being investigated by us to make the results
more quantitative and insightful. Apparently there is
more to the failure of KYG at large p than just a limita-
tion of the SPM: any type of analysis performed around
the linear solution, as done here, cannot be expected to
work if the (attracting fixed point) solution becomes hy-
perbolic at some large enough value of u, while an al-

ternate solution (corresponding to a different asymptotic
profile and velocity) becomes stable.

IV. CONCLUSION

The utility of singular perturbation methods lies in the
calculation of statistical quantities (e.g., time-dependent
structure factors, domain growth laws), which are deter-
mined by the qualitative features of the solution. How-
ever, we have shown that the singular perturbation ap-
proach will not give a reasonable solution to the initial-
value problem for a reaction-diffusion equation where
convection is strong enough (a precise criterion will be
given in a future article) even in terms of such statisti-
cal quantities since the defect dynamics are incorrectly
predicted. It can be shown [17] that this incorrect defect
dynamics is due to the convection term dominating the
diffusive transport of perturbations, and is not due only
to some intrinsic limitations of the singular perturbation
approach itself. Hence approaches which treat the full
nonlinear PDE must be sought to study the dynamics of
reaction-diffusion systems where an external bias field or
convection is present.
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